题目内容

已知圆C以为圆心且经过原点O.
(1)若t=2,写出圆C的方程;
(2)在(1)的条件下,已知点B的坐标为(0,2),设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
【答案】分析:(1)直接代入可得圆的方程;
(2)求出点B关于直线x+y+2=0的对称点,将已知问题转化为对称点到圆上的最小值问题,根据圆的几何条件,圆外的点到圆上的点的最小值等于该点到圆心的距离减去半径.
解答:解:(1)由题知,圆C方程为
所以t=2,圆方程为(x-2)2+(y-1)2=5
(2)点B(0,2)关于直线x+y+2=0的对称点为B′(-4,-2),
则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,
又B′到圆上点Q的最短距离为|BC|-r=3-=2
所以|PB|+|PQ|的最小值为
直线B′C的方程为
则直线B′C与直线x+y+2=0的交点P的坐标为
点评:本题考查圆的方程,考查对称性,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网