题目内容

数列{an}中,a1=
1
2
,  an+1=
nan
(n+1)(nan+1)
(n∈N*)
,则数列{an}的前2012项的和为
2012
2013
2012
2013
分析:由已知可得,
1
(n+1)an+1
=
nan+1
nan
=
1
nan
+1
1
(n+1)an+1
-
1
nan
=1
1
a1
=2
,可得数列{
1
nan
}是以2为首项,以1为公差的等差数列,利用等差数列的通项公式可求
1
nan
,进而可求an,然后利用裂项求和即可求解
解答:解:∵a1=
1
2
,  an+1=
nan
(n+1)(nan+1)
(n∈N*)

1
(n+1)an+1
=
nan+1
nan
=
1
nan
+1

1
(n+1)an+1
-
1
nan
=1

a1=
1
2

1
a1
=2

∴数列{
1
nan
}是以2为首项,以1为公差的等差数列
1
nan
=2+(n-1)×1
=n+1
an=
1
n(n+1)
=
1
n
-
1
n+1

S2012=1-
1
2
+
1
2
-
1
3
+…+
1
2012
-
1
2013
=1-
1
2013
=
2012
2013

故答案为:
2012
2013
点评:本题主要考查了利用数列的递推公式求解数列的 和,解题的关键是构造等差数列求出数列的通项公式,及裂项求和方法的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网