题目内容

设A、B为圆x2+y2=1上两点,O为坐标原点(A、O、B不共线).
(1)求证:
OA
+
OB
OA
-
OB
垂直;
(2)若单位圆交x轴正半轴于C点,且∠COA=
π
4
,∠COB=θ,θ∈(-
π
4
π
4
),
OA
OB
=
4
5
,求cosθ.
分析:(1)欲证
OA
+
OB
OA
-
OB
垂直,只需证明(
OA
+
OB
)•(
OA
-
OB
)=0即可;
(2)根据
OA
OB
=
4
5
可求出cos(θ-
π
4
),然后根据cosθ=cos[(θ-
π
4
)+
π
4
],利用余弦的两角和公式进行求解.
解答:(1)证明:由题意知|
OA
|=|
OB
|=1,
∴(
OA
+
OB
)•(
OA
-
OB
)=
OA
2-
OB
2
=|
OA
|2-|
OB
|2=1-1=0,
OA
+
OB
OA
-
OB
垂直.
(2)解:
OA
=(cos
π
4
,sin
π
4
),
OB
=(cosθ,sinθ),
OA
OB
=cos
π
4
cosθ+sin
π
4
sinθ=cos(θ-
π
4
),
OA
OB
=
4
5
,∴cos(θ-
π
4
)=
4
5

∵-
π
4
<θ<
π
4

∴-
π
2
<θ-
π
4
<0,
∴sin(θ-
π
4
)=-
1-cos2(θ-
π
4
)
=-
3
5

∴cosθ=cos[(θ-
π
4
)+
π
4
]
=cos(θ-
π
4
)cos
π
4
-sin(θ-
π
4
)sin
π
4

=
4
5
×
2
2
-(-
3
5
)×
2
2
=
7
2
10
点评:本题主要考查了向量在几何中的应用,以及同角三角函数和两角和的余弦公式,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网