题目内容
设A、B为圆x2+y2=1上两点,O为坐标原点(A、O、B不共线).
(1)求证:
+
与
-
垂直;
(2)若单位圆交x轴正半轴于C点,且∠COA=
,∠COB=θ,θ∈(-
,
),
•
=
,求cosθ.
(1)求证:
| OA |
| OB |
| OA |
| OB |
(2)若单位圆交x轴正半轴于C点,且∠COA=
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| OA |
| OB |
| 4 |
| 5 |
分析:(1)欲证
+
与
-
垂直,只需证明(
+
)•(
-
)=0即可;
(2)根据
•
=
可求出cos(θ-
),然后根据cosθ=cos[(θ-
)+
],利用余弦的两角和公式进行求解.
| OA |
| OB |
| OA |
| OB |
| OA |
| OB |
| OA |
| OB |
(2)根据
| OA |
| OB |
| 4 |
| 5 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
解答:(1)证明:由题意知|
|=|
|=1,
∴(
+
)•(
-
)=
2-
2
=|
|2-|
|2=1-1=0,
∴
+
与
-
垂直.
(2)解:
=(cos
,sin
),
=(cosθ,sinθ),
∴
•
=cos
cosθ+sin
sinθ=cos(θ-
),
∵
•
=
,∴cos(θ-
)=
,
∵-
<θ<
,
∴-
<θ-
<0,
∴sin(θ-
)=-
=-
,
∴cosθ=cos[(θ-
)+
]
=cos(θ-
)cos
-sin(θ-
)sin
=
×
-(-
)×
=
.
| OA |
| OB |
∴(
| OA |
| OB |
| OA |
| OB |
| OA |
| OB |
=|
| OA |
| OB |
∴
| OA |
| OB |
| OA |
| OB |
(2)解:
| OA |
| π |
| 4 |
| π |
| 4 |
| OB |
∴
| OA |
| OB |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
∵
| OA |
| OB |
| 4 |
| 5 |
| π |
| 4 |
| 4 |
| 5 |
∵-
| π |
| 4 |
| π |
| 4 |
∴-
| π |
| 2 |
| π |
| 4 |
∴sin(θ-
| π |
| 4 |
1-cos2(θ-
|
| 3 |
| 5 |
∴cosθ=cos[(θ-
| π |
| 4 |
| π |
| 4 |
=cos(θ-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
| 4 |
| 5 |
| ||
| 2 |
| 3 |
| 5 |
| ||
| 2 |
7
| ||
| 10 |
点评:本题主要考查了向量在几何中的应用,以及同角三角函数和两角和的余弦公式,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目