题目内容
已知函数f(x)=alnx-| 1 | x |
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当a=1,且x≥2时,证明:f(x-1)≤2x-5.
分析:(Ⅰ)导数在切点处的导数值是切线斜率,垂直的直线斜率互为负倒数.
(Ⅱ)导数大于0,对应区间为单调递增区间;导数小于0,对应区间为单调递减区间
(Ⅲ)用导数研究函数的单调性,求函数的最值,证明不等式.
(Ⅱ)导数大于0,对应区间为单调递增区间;导数小于0,对应区间为单调递减区间
(Ⅲ)用导数研究函数的单调性,求函数的最值,证明不等式.
解答:解:(Ⅰ)函数f(x)的定义域为{x|x>0},f′(x)=
+
.
又曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,
所以f'(1)=a+1=2,
即a=1.
(Ⅱ)由于f′(x)=
.
当a≥0时,对于x∈(0,+∞),有f'(x)>0在定义域上恒成立,
即f(x)在(0,+∞)上是增函数.
当a<0时,由f'(x)=0,得x=-
∈(0,+∞).
当x∈(0,-
)时,f'(x)>0,f(x)单调递增;
当x∈(-
,+∞)时,f'(x)<0,f(x)单调递减.
(Ⅲ)当a=1时,f(x-1)=ln(x-1)-
x∈[2,+∞).
令g(x)=ln(x-1)-
-2x+5.g′(x)=
+
-2=-
.
当x>2时,g′(x)<0,g(x)在(2,+∞)单调递减.
又g(2)=0,所以g(x)在(2,+∞)恒为负.
所以当x∈[2,+∞)时,g(x)≤0.
即ln(x-1)-
-2x+5≤0.
故当a=1,且x≥2时,f(x-1)≤2x-5成立.
| a |
| x |
| 1 |
| x2 |
又曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,
所以f'(1)=a+1=2,
即a=1.
(Ⅱ)由于f′(x)=
| ax+1 |
| x2 |
当a≥0时,对于x∈(0,+∞),有f'(x)>0在定义域上恒成立,
即f(x)在(0,+∞)上是增函数.
当a<0时,由f'(x)=0,得x=-
| 1 |
| a |
当x∈(0,-
| 1 |
| a |
当x∈(-
| 1 |
| a |
(Ⅲ)当a=1时,f(x-1)=ln(x-1)-
| 1 |
| x-1 |
令g(x)=ln(x-1)-
| 1 |
| x-1 |
| 1 |
| x-1 |
| 1 |
| (x-1)2 |
| (2x-1)(x-2) |
| (x-1)2 |
当x>2时,g′(x)<0,g(x)在(2,+∞)单调递减.
又g(2)=0,所以g(x)在(2,+∞)恒为负.
所以当x∈[2,+∞)时,g(x)≤0.
即ln(x-1)-
| 1 |
| x-1 |
故当a=1,且x≥2时,f(x-1)≤2x-5成立.
点评:本题考查导数的几何意义;切点处的导数为切线斜率;用导数求单调区间:导数大于0,对应区间为单调递增区间;导数小于0,对应区间为单调递减区间;用导数求最值,证明不等式.
练习册系列答案
相关题目
已知函数f(x)=a-
,若f(x)为奇函数,则a=( )
| 1 |
| 2x+1 |
A、
| ||
| B、2 | ||
C、
| ||
| D、3 |