题目内容
设函数f(x)=
.
(1)当a=0时,求曲线y=f(x)在点(1,f(1)处的切线方程;
(2)讨论f(x)的单调性.
| x2-ax+a | ex |
(1)当a=0时,求曲线y=f(x)在点(1,f(1)处的切线方程;
(2)讨论f(x)的单调性.
分析:(1)当a=0时,f(x)=
,f′(x)=
,于是可求f′(1)=
,f(1)=
,从而可求曲线y=f(x)在点(1,f(1)处的切线方程;
(2)由f(x)=
,可求得f′(x)=-
,通过对a与2的大小关系的讨论,即可求得f(x)的单调区间.
| x2 |
| ex |
| 2x-x2 |
| ex |
| 1 |
| e |
| 1 |
| e |
(2)由f(x)=
| x2-ax+a |
| ex |
| (x-2)(x-a) |
| ex |
解答:解:(1)当a=0时,f(x)=
,f′(x)=
,
∴f′(1)=
,即切线的斜率k=
,又f(1)=
,
∴曲线y=f(x)在点(1,f(1)处的切线方程为:y-
=
(x-1),即y=
x.
(2)∵f(x)=
,
∴f′(x)=
=
=-
.
若a>2,由f′(x)>0得,2<x<a;由f′(x)<0得x<2或x>a,
即当a>2时,f(x)的单调递增区间为(2,a),单调递减区间为(-∞,2),(a,+∞);
同理可得,当a=2时,f′(x)≤0,f(x)在R上单调递减;
当a<2时,f(x)的单调递增区间为(a,2),单调递减区间为(-∞,a),(2,+∞);
| x2 |
| ex |
| 2x-x2 |
| ex |
∴f′(1)=
| 1 |
| e |
| 1 |
| e |
| 1 |
| e |
∴曲线y=f(x)在点(1,f(1)处的切线方程为:y-
| 1 |
| e |
| 1 |
| e |
| 1 |
| e |
(2)∵f(x)=
| x2-ax+a |
| ex |
∴f′(x)=
| (2x-a)ex-(x2-ax+a)ex |
| e2x |
| -x2+(a+2)x-2a |
| ex |
| (x-2)(x-a) |
| ex |
若a>2,由f′(x)>0得,2<x<a;由f′(x)<0得x<2或x>a,
即当a>2时,f(x)的单调递增区间为(2,a),单调递减区间为(-∞,2),(a,+∞);
同理可得,当a=2时,f′(x)≤0,f(x)在R上单调递减;
当a<2时,f(x)的单调递增区间为(a,2),单调递减区间为(-∞,a),(2,+∞);
点评:本题考查利用导数研究函数的单调性,在(2)中求得f′(x)=-
是关键,着重考查导数的应用与分类讨论思想,属于中档题.
| (x-2)(x-a) |
| ex |
练习册系列答案
相关题目