题目内容

设关于x的一元二次方程x2+2ax+b2=0.

(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.

(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

(1)(2)


解析:

设事件A为“方程x2+2ax+b2=0有实根”.

当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.

(1)基本事件共有12个:

(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).

其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件,事件A发生的概率为P(A)==.

(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}.

构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}.

所以所求的概率为P(A)==.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网