题目内容
已知数列{an}满足a1=3,且an+1-3an=3n,(n∈N*),数列{bn}满足bn=3-nan.(1)求证:数列{bn}是等差数列;
(2)设Sn=
| a1 |
| 3 |
| a2 |
| 4 |
| a3 |
| 5 |
| an |
| n+2 |
| 1 |
| 128 |
| Sn |
| S2n |
| 1 |
| 4 |
分析:(1)由bn=3-nan得an=3nbn,则an+1=3n+1bn+1.由此入手,能够证明数列{bn}是等差数列;
(2)因为数列{bn}是首项为b1=3-1a1=1,公差为
等差数列,所以bn=1+
(n-1)=
,an=3nbn=(n+2)×3n-1.由此能手能够求出满足不等式
<
<
的所有正整数n的值.
(2)因为数列{bn}是首项为b1=3-1a1=1,公差为
| 1 |
| 3 |
| 1 |
| 3 |
| n+2 |
| 3 |
| 1 |
| 128 |
| Sn |
| S2n |
| 1 |
| 4 |
解答:(1)证明:由bn=3-nan得an=3nbn,则an+1=3n+1bn+1.
代入an+1-3an=3n中,得3n+1bn+1-3n+1bn=3n,
即得bn+1-bn=
.
所以数列{bn}是等差数列.(6分)
(2)解:因为数列{bn}是首项为b1=3-1a1=1,公差为
等差数列,
则bn=1+
(n-1)=
,则an=3nbn=(n+2)×3n-1.(8分)
从而有
=3n-1,
故Sn=
+
+
++
=1+3+32++3n-1=
=
.(11分)
则
=
=
,
由
<
<
,得
<
<
.
即3<3n<127,得1<n≤4.
故满足不等式
<
<
的所有正整数n的值为2,3,4.(14分)
代入an+1-3an=3n中,得3n+1bn+1-3n+1bn=3n,
即得bn+1-bn=
| 1 |
| 3 |
所以数列{bn}是等差数列.(6分)
(2)解:因为数列{bn}是首项为b1=3-1a1=1,公差为
| 1 |
| 3 |
则bn=1+
| 1 |
| 3 |
| n+2 |
| 3 |
从而有
| an |
| n+2 |
故Sn=
| a1 |
| 3 |
| a2 |
| 4 |
| a3 |
| 5 |
| an |
| n+2 |
| 1-3n |
| 1-3 |
| 3n-1 |
| 2 |
则
| Sn |
| S2n |
| 3n-1 |
| 32n-1 |
| 1 |
| 3n+1 |
由
| 1 |
| 128 |
| Sn |
| S2n |
| 1 |
| 4 |
| 1 |
| 128 |
| 1 |
| 3n+1 |
| 1 |
| 4 |
即3<3n<127,得1<n≤4.
故满足不等式
| 1 |
| 128 |
| Sn |
| S2n |
| 1 |
| 4 |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细求解,合理地运用公式.
练习册系列答案
相关题目