题目内容

将数字1,2,3,4,5,6拼成一列,记第i个数为ai(i=1,2,…,6),若a1≠1,a3≠3,a5≠5,a1<a3<a5,则不同的排列方法种数为


  1. A.
    18
  2. B.
    30
  3. C.
    36
  4. D.
    48
B
分析:本题为有特殊要求的排列问题,可以从特殊位置入手考虑.
由a1≠1且a1<a3<a5,故a1的取法方法只有2、3、4三种,由a1的三种情况分别考虑a3、a5的安排方式,最后考虑a2,a4,a6
解答:分两步:(1)先排a1,a3,a5,a1=2,有2种;a1=3有2种;a1=4有1种,共有5种;(2)再排a2,a4,a6,共有A33=6种,故不同的排列方法种数为5×6=30,选B
点评:本题考查有特殊要求的排列问题,需要较强的分析问题、解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网