题目内容

两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线和圆相切,则的取值范围是(    )

A.
B.
C.
D.

B

解析试题分析:当两平行直线和圆相交时,有,解得
当两条平行直线和圆相离时,解得
故当两平行直线和圆相切时,把以上两种情况下求得的的范围取并集后,再取此并集的补集,即得所求,所求的的最后范围是.
考点:1.点到直线的距离公式;2.并集与补集的运算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网