题目内容

精英家教网如图,PA、PB是⊙O的两条切线,切点分别为A、B若直径AC=12cm,∠P=60°,求弦AB的长.
分析:连接CB.PA、PB是QO的切线,由切线长定理知PA=PB;又∠P=60°,则等腰三角形APB是等边三角形,则有ABP=60°;由弦切角定理知,∠PAB=∠C=60°,AC是直径;由直径对的圆周角是直角得∠ABC=90°,则在Rt△ABC中,有∠CAB=30°,进而可知AB=ACsin∠CAB=12×
3
2
=6
3
解答:解:连接CB.
∵PA、PB是QO的切线,
∴PA=PB,
又∵∠P=60°,
∴∠PAB=60°;
又∵AC是QO的直径,
∴CA⊥PA,∠ABC=90°,
∴∠CAB=30°,
而AC=12,
∴在Rt△ABC中,cos30°=
AB
AC

∴AB=12×
3
2
=6
3
,弦AB的长6
3
点评:本题利用了切线长定理,等边三角形的判定和性质,弦切角定理,直角三角形的性质,正弦的概念求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网