搜索
题目内容
设函数f(x)=
在x=1处连续,则实数a的值为________________.
试题答案
相关练习册答案
答案:
由
f(x)=f(1),
及
f(x)=
,
得a=
.
练习册系列答案
智秦优化360度训练法系列答案
优翼优干线系列答案
绩优课堂全优达标测试卷系列答案
100分闯关期末冲刺系列答案
绩优课堂单元达标创新测试卷系列答案
名校秘题冲刺卷系列答案
神龙牛皮卷期末100分闯关系列答案
状元成才路创新名卷系列答案
优优好卷单元测评卷系列答案
名校联盟快乐课堂系列答案
相关题目
设二次函数f(x)=ax
2
+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且
x≤f(x)≤
1
2
(1+
x
2
)
;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k
2
x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
(2013•铁岭模拟)设函数
f(x)=
1
2
x
2
-tx+3lnx
,
g(x)=
2x+t
x
2
-3
,已知x=a,x=b为函数f(x)的极值点(0<a<b)
(1)求函数g(x)在(-∞,-a)上的单调区间,并说明理由.
(2)若曲线g(x)在x=1处的切线斜率为-4,且方程g(x)-m=0有两个不相等的负实根,求实数m的取值范围.
设函数f(x)的定义域为D,若存在非零实数h使得对于任意x∈M(M⊆D),有x+h⊆D,且f(x+h)≥f(x),则称f(x)为M上的“h阶高调函数”.给出如下结论:
①若函数f(x)在R上单调递增,则存在非零实数h使f(x)为R上的“h阶高调函数”;
②若函数f(x)为R上的“h阶高调函数”,则f(x)在R上单调递增;
③若函数f(x)=x
2
为区间[-1,+∞)上的“h阶高诬蔑财函数”,则h≥2;
④若函数f(x)在R上的奇函数,且x≥0时,f(x)=|x-1|-1,则f(x)只能是R上的“4阶高调函数”.
其中正确结论的序号为( )
A、①③
B、①④
C、②③
D、②④
设函数f(x)的定义域为D,若存在非零实数h使得对于任意x∈M(M⊆D),有x+h⊆D,且f(x+h)≥f(x),则称f(x)为M上的“h阶高调函数”.给出如下结论:
①若函数f(x)在R上单调递增,则存在非零实数h使f(x)为R上的“h阶高调函数”;
②若函数f(x)为R上的“h阶高调函数”,则f(x)在R上单调递增;
③若函数f(x)=x
2
为区间[-1,+∞)上的“h阶高诬蔑财函数”,则h≥2;
④若函数f(x)在R上的奇函数,且x≥0时,f(x)=|x-1|-1,则f(x)只能是R上的“4阶高调函数”.
其中正确结论的序号为
A.
①③
B.
①④
C.
②③
D.
②④
设二次函数f(x)=ax
2
+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且
x≤f(x)≤
1
2
(1+
x
2
)
;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k
2
x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案