搜索
题目内容
函数
y=
x-1
(x≥1)
的反函数为______.
试题答案
相关练习册答案
∵
y=
x-1
(x≥1)
,
∴x=y
2
+1(y≥0)),
∴x,y互换,得y=x
2
+1(x≥0).
故答案为y=x
2
+1(x≥0).
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R
+
,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2
n
)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2
n
)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2
-n
)与2
-n
+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).
(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数
h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N
(1)若函数
f(x)=
1
x+1
,g(x)=
x
2
+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x
2
+2x+2,设b
n
为曲线y=h(x)在点(a
n
,h(a
n
))处切线的斜率;而{a
n
}是等差数列,公差为1(n∈N
*
),点P
1
为直线l:2x-y+2=0与x轴的交点,点P
n
的坐标为(a
n
,b
n
).求证:
1
|
P
1
P
2
|
2
+
1
|
P
1
P
3
|
2
+…+
1
|
P
1
P
n
|
2
<
2
5
;
(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.
读下列程序,程序输出的函数y=
-x+1 (x<0)
0 (x=0)
x+1 (x>0)
-x+1 (x<0)
0 (x=0)
x+1 (x>0)
.
INPUT x
IF x<0THENy=-x+1
ELSE
IF x=0THENy=0
ELSEy=x+1
END IF
END IF
PRINT y
END.
对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R
+
,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2
n
)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2
n
)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2
-n
)与2
-n
+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).
对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R
+
,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2
n
)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2
n
)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2
-n
)与2
-n
+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案