题目内容
函数f(x)=
x3-
ax2+
的极值点是x1,x2,函数g(x)=x-alnx的极值点是x0,若x0+x1+x2<2.
(I )求实数a的取值范围;
(II)若存在实数a,使得对?x3,x4∈[1,m],不等式f(x3)≤g(x4)恒成立,求实数m的取值范围.
解:(I )∵函数f(x)=
x3-
ax2+
的极值点是x1,x2,,
∴
,x1,x2是方程
的两个根,
∴
,x1+x2=a,
∵g(x)=x-alnx的极值点是x0,
∴
,(x>0).
当a≤0时,g′(x)>0,函数无极值点.
当a>0,x∈(0,a),g′(x)<0;当x∈(a,+∞),g′(x)>0,
函数的极值点x0=a.
∵x0+x1+x2<2.
∴
,
∴
.
(II)∵
,
∴g(x)在[1,m]上为增函数,
∴g(x)min=g(1)=1.
导函数f′(x)的对称轴为x=
,
,
∴x1,x2都是小于1的正数,
∵f′(x)=(x-x1)(x-x2),令x1<x2,
∵
,
∴f(x)在[1,m]上为增函数,
∴
,
∴
,
即-27m2a+18m3+4m≤0,
∵m>1,令h(a)在(
)为减函数,
∴h(1)<0,即18m3-27m2+4m<0,
解得
,
∴
.
分析:(I )由
,x1,x2是方程
的两个根,
,x1+x2=a,由
,(x>0).知当a≤0时,g′(x)>0,函数无极值点.当a>0,x∈(0,a),g′(x)<0;当x∈(a,+∞),g′(x)>0,函数的极值点x0=a.由此能求出实数a的取值范围.
(II)由
,知g(x)在[1,m]上为增函数,故g(x)min=g(1)=1.导函数f′(x)的对称轴为x=
,由此入手能够求出实数m的取值范围.
点评:本题考查利用导数求闭区间上函数的最值的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
∴
∴
∵g(x)=x-alnx的极值点是x0,
∴
当a≤0时,g′(x)>0,函数无极值点.
当a>0,x∈(0,a),g′(x)<0;当x∈(a,+∞),g′(x)>0,
函数的极值点x0=a.
∵x0+x1+x2<2.
∴
∴
(II)∵
∴g(x)在[1,m]上为增函数,
∴g(x)min=g(1)=1.
导函数f′(x)的对称轴为x=
∴x1,x2都是小于1的正数,
∵f′(x)=(x-x1)(x-x2),令x1<x2,
∵
∴f(x)在[1,m]上为增函数,
∴
∴
即-27m2a+18m3+4m≤0,
∵m>1,令h(a)在(
∴h(1)<0,即18m3-27m2+4m<0,
解得
∴
分析:(I )由
(II)由
点评:本题考查利用导数求闭区间上函数的最值的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目