题目内容
已知定义在(-1,1)上的函数f(x),满足f(
)=1,并且?x,y∈(-1,1)都有f(x)-f(y)=f(
)成立,对于数列{xn},有x1=
,xn+1=
.
(Ⅰ)求f(0),并证明f(x)为奇函数;
(Ⅱ)求数列{f(xn)}的通项公式;
(Ⅲ)对于(Ⅱ)中的数列{f(xn)},证明:
-
<
+
+…+
<
(n∈N*).
| 1 |
| 2 |
| x-y |
| 1-xy |
| 1 |
| 2 |
| 2xn | ||
1+
|
(Ⅰ)求f(0),并证明f(x)为奇函数;
(Ⅱ)求数列{f(xn)}的通项公式;
(Ⅲ)对于(Ⅱ)中的数列{f(xn)},证明:
| n |
| 2 |
| 5 |
| 6 |
| f(x1)-1 |
| f(x2)-1 |
| f(x2)-1 |
| f(x3)-1 |
| f(xn)-1 |
| f(xn+1)-1 |
| n |
| 2 |
(1)当x=y=0时,f(0)=0,再令x=0得f(0)-f(y)=f(-y)即f(y)+f(-y)=0
∴f(x)在(-1,1)上为为奇函数.
(2)由x1=
,xn+1=
易知0<xn<1
∵f(xn)-f(-xn)=f(
)且f(x)且f(x)在(-1,1)上为奇函数
∴f(xn+1)=2f(xn),f(x1)=1
∴f(xn)是以1为首项,2为公比的等比数列
∴f(xn)=2n-1
(3)
+
+…+
=
+
+…+
<
+
+…+
=
∴f(x)在(-1,1)上为为奇函数.
(2)由x1=
| 1 |
| 2 |
| 2xn | ||
1+
|
∵f(xn)-f(-xn)=f(
| 2xn |
| 1+xn2 |
∴f(xn+1)=2f(xn),f(x1)=1
∴f(xn)是以1为首项,2为公比的等比数列
∴f(xn)=2n-1
(3)
| f(x1)-1 |
| f(x2)-1 |
| f(x2)-1 |
| f(x3)-1 |
| f(xn)-1 |
| f( xn+1)-1 |
| 0 |
| 2-1 |
| 2-1 |
| 22-1 |
| 2n-1-1 |
| 2n+1-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
练习册系列答案
相关题目