题目内容
已知等比数列{an}中,an>0,a2=
,
=
,则
-
+
-
+…+(-1)n+1
的值为( )
| 1 |
| 4 |
| S4 |
| S2 |
| 5 |
| 4 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a4 |
| 1 |
| an |
分析:设等比数列{an}的公比为q,由an>0,可得q>0.经验证q=1不成立.由a2=
,
=
,利用等比数列的通项公式及其前n项和公式可得
,及q>0,即可解出a1及q.进而得到an,再利用等比数列的前n项和公式即可得出.
| 1 |
| 4 |
| S4 |
| S2 |
| 5 |
| 4 |
|
解答:解:设等比数列{an}的公比为q,∵an>0,∴q>0.经验证q=1不成立.
由a2=
,
=
,可得
,及q>0,解得
.
∴an=a1qn-1=(
)n.
∴
-
+
-
+…+(-1)n+1
=2-22+23+…+(-1)n+1•2n
=
=
[1-(-2)n].
故选D.
由a2=
| 1 |
| 4 |
| S4 |
| S2 |
| 5 |
| 4 |
|
|
∴an=a1qn-1=(
| 1 |
| 2 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a4 |
| 1 |
| an |
=2-22+23+…+(-1)n+1•2n
=
| 2[1-(-2)n] |
| 1-(-2) |
=
| 2 |
| 3 |
故选D.
点评:熟练掌握等比数列的通项公式及其前n项和公式是解题的关键.
练习册系列答案
相关题目