题目内容
已知a>0,函数f(x)=-2asin(2x+
)+2a+b,当x∈[0,
]时,-5≤f(x)≤1.
(1)求常数a,b的值;
(2)设g(x)=f(x+
)且lgg(x)>0,求g(x)的单调区间.
| π |
| 6 |
| π |
| 2 |
(1)求常数a,b的值;
(2)设g(x)=f(x+
| π |
| 2 |
(1)∵x∈[0,
],
∴2x+
∈[
,
],
∴sin(2x+
)∈[-
,1],
∴-2asin(2x+
)∈[-2a,a],
∴f(x)∈[b,3a+b],又-5≤f(x)≤1.
∴
,解得
.
(2)f(x)=-4sin(2x+
)-1,
g(x)=f(x+
)=-4sin(2x+
)-1
=4sin(2x+
)-1,
又由lgg(x)>0,得g(x)>1,
∴4sin(2x+
)-1>1,
∴sin(2x+
)>
,
∴
+2kπ<2x+
<
π+2kπ,k∈Z,
由
+2kπ<2x+
≤2kπ+
,得
kπ<x≤kπ+
,k∈Z.
由
+2kπ≤2x+
<
π+2kπ得
+kπ≤x<
+kπ,k∈Z.
∴函数g(x)的单调递增区间为(kπ,
+kπ](k∈Z),
单调递减区间为[
+kπ,
+kπ)(k∈Z)
| π |
| 2 |
∴2x+
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
∴sin(2x+
| π |
| 6 |
| 1 |
| 2 |
∴-2asin(2x+
| π |
| 6 |
∴f(x)∈[b,3a+b],又-5≤f(x)≤1.
∴
|
|
(2)f(x)=-4sin(2x+
| π |
| 6 |
g(x)=f(x+
| π |
| 2 |
| 7π |
| 6 |
=4sin(2x+
| π |
| 6 |
又由lgg(x)>0,得g(x)>1,
∴4sin(2x+
| π |
| 6 |
∴sin(2x+
| π |
| 6 |
| 1 |
| 2 |
∴
| π |
| 6 |
| π |
| 6 |
| 5 |
| 6 |
由
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
kπ<x≤kπ+
| π |
| 6 |
由
| π |
| 2 |
| π |
| 6 |
| 5 |
| 6 |
| π |
| 6 |
| π |
| 3 |
∴函数g(x)的单调递增区间为(kπ,
| π |
| 6 |
单调递减区间为[
| π |
| 6 |
| π |
| 3 |
练习册系列答案
相关题目
已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是( )
| A、?x∈R,f(x)≤f(x0) | B、?x∈R,f(x)≥f(x0) | C、?x∈R,f(x)≤f(x0) | D、?x∈R,f(x)≥f(x0) |