题目内容
(1)求该邮递员途径C地的概率f(n);
(2)求证:2<[2f(n)]2n+1<3,(n∈N*).
分析:(1)求得所走路程最短共有
种不同的走法,其中途径C地的走法有2
种走法,由此可得邮递员途径C地的概率f(n) 的值.
(2)由2f(n)=
=1+
,得只要证且n≥3 时,2<(1+
)n<3 即可.利用放缩法证明 2<(1+
)n,(1+
)n<3,从而证明不等式成立.
| C | n+1 2n+2 |
| C | n 2n |
(2)由2f(n)=
| 2(n+1) |
| 2n+1 |
| 1 |
| 2n+1 |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
解答:解:(1)邮递员从该城市西北角的邮局A到达东南角B地,要求所走路程最短共有
种不同的走法,其中途径C地的走法有2
种走法,
所以邮递员途径C地的概率f(n)=
=
•
=
.
(2)由2f(n)=
=1+
,得[2f(n)]2n+1=(1+
)2n+1.
要证 n∈N*时,2<[2f(n)]2n+1<3,
只要证 n∈N* 时,2<(1+
)2n+1<3,
因为 n∈N* 时,2n+1∈N*,且 2n+1≥3,
所以只要证 n∈N* 时,且n≥3 时,2<(1+
)n<3.
由于n≥3 时,(1+
)n=
+
•
+
•(
)2+…+
•(
)n>
+
•
=2,
且 (1+
)n=
+
•
+
•(
)2+…+
•(
)n=2+
•
+
•
+…+
•
=2+
•
•
+
•
•
•
+…+
•
•
•
…
•
<2+
+
+…+
<2+
+
+
+…+
=2+(
-
)+(
-
)+(
-
)+…+(
-
)=3-
<3.
综上可得:2<(1+
)n<3 成立,即 2<[2f(n)]2n+1<3成立.
| C | n+1 2n+2 |
| C | n 2n |
所以邮递员途径C地的概率f(n)=
2
| ||
|
| 2(2n)! |
| (n!)2 |
| [(n+1)!]2 |
| (2n+2)! |
| n+1 |
| 2n+1 |
(2)由2f(n)=
| 2(n+1) |
| 2n+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
要证 n∈N*时,2<[2f(n)]2n+1<3,
只要证 n∈N* 时,2<(1+
| 1 |
| 2n+1 |
因为 n∈N* 时,2n+1∈N*,且 2n+1≥3,
所以只要证 n∈N* 时,且n≥3 时,2<(1+
| 1 |
| n |
由于n≥3 时,(1+
| 1 |
| n |
| C | 0 n |
| C | 1 n |
| 1 |
| n |
| C | 2 n |
| 1 |
| n |
| C | n n |
| 1 |
| n |
| C | 0 n |
| C | 1 n |
| 1 |
| n |
且 (1+
| 1 |
| n |
| C | 0 n |
| C | 1 n |
| 1 |
| n |
| C | 2 n |
| 1 |
| n |
| C | n n |
| 1 |
| n |
| n(n-1) |
| 2! |
| 1 |
| n2 |
| n(n-1)(n-2) |
| 3! |
| 1 |
| n3 |
| n•(n-1)•(n-2)•3•2•1 |
| n! |
| 1 |
| nn |
=2+
| 1 |
| 2! |
| n |
| n |
| n-1 |
| n2 |
| 1 |
| 3! |
| n |
| n |
| n-1 |
| n |
| n-2 |
| n |
| 1 |
| n! |
| n |
| n |
| n-1 |
| n |
| n-2 |
| n |
| 2 |
| n |
| 1 |
| n |
| 1 |
| 2! |
| 1 |
| 3! |
| 1 |
| n! |
<2+
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n-1) |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
综上可得:2<(1+
| 1 |
| n |
点评:本题主要考查排列、组合以及二项式定理的应用,等可能事件的概率,用放缩法证明不等式,属于难题.
练习册系列答案
相关题目