题目内容
【题目】已知抛物线
的焦点
与椭圆
的右焦点重合,抛物线
的动弦
过点
,过点
且垂直于弦
的直线交抛物线的准线于点
.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)求
的最小值.
【答案】(Ⅰ)
(Ⅱ)2
【解析】
(Ⅰ)由椭圆求得右焦点,根据抛物线的焦点求出p的值,再写出抛物线C的标准方程;
(Ⅱ)①当动弦AB所在的直线斜率不存在时,求得
2;②当动弦AB所在的直线斜率存在时,写出AB所在直线方程,与抛物线方程联立求出弦长|AB|;写出FM所在的直线方程,与抛物线方程联立求出弦长|MF|,再求
的最小值,从而得出结论.
(Ⅰ)由椭圆方程得,椭圆的右焦点为![]()
∴抛物线的焦点为
,∴
,抛物线的标准方程为
.
(Ⅱ)①当动弦
所在直线的斜率不存在时,易得:
,
,
.
②当动弦
所在的直线斜率存在时,易知,
的斜率不为0.
设
所在直线方程为
,且
,
.
联立方程组:
,得
;
,
,
,
![]()
所在的直线方程为
,联立方程组:
,得点
,
∴![]()
∴
,
综上所述:
的最小值为2.
【题目】某医院用光电比色计检查尿汞时,得尿汞含量(毫克/升)与消光系数如下表:
尿汞含量 | 2 | 4 | 6 | 8 | 10 |
消光系数 | 64 | 138 | 205 | 285 | 360 |
(1)作散点图;
(2)如果
与
之间具有线性相关关系,求回归线直线方程;
(3)估计尿汞含量为9毫克/升时消光系数.
,
.
参考数据:
,
.
【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高二上学期开设选修中的“物理”和“政治”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的2×2列联表.请将列联表补充完整,并判断是否有95%的把握认为选择科目与性别有关?说明你的理由;
选择“物理” | 选择“政治” | 总计 | |
男生 | 10 | ||
女生 | 30 | ||
总计 |
(2)在(1)的条件下,从选择“政治”的学生中抽取5人,再从这5人中随机抽取2 人,设这2人中男生的人数为
,求
的分布列及数学期望.
附参考公式及数据:
,其中![]()
| 0.05 | 0.01 |
| 3.841 | 6.635 |