题目内容

如图,圆x2+y2=r2的弦AB垂直于x轴,P为AB上一点,且|AP|·|PB|=a2(a≤r)为定值,求点P的轨迹方程.

解:设A(rcosφ,rsinφ),则点B(rcosφ,-rsinφ),P(x,y).

∵AB⊥x轴,∴x=rcosφ,|AP|=|rsinφ-y|,|PB|=|y+rsinφ|.

∵|AP|·|PB|=|(rsinφ-y)·(rsinφ+y)|=a2|y2-r2sin2φ|=a2,

∵|y|≤|rsinφ|,∴r2sin2φ-y2=a2.

∴y2+a2=r2sin2φ.又x=rcosφ,

∴x2+y2+a2=r2x2+y2=r2-a2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网