题目内容
已知数列{an}的前n项和Sn满足Sn=
n2+
n(n∈N*).
(1)求数列{an}的通项公式an;
(2)令bn=
求数列{bn}的前n项和Tn
(3)令cn=
+
证明:2n<c1+c2+…cn<2n+
.
| 1 |
| 2 |
| 3 |
| 2 |
(1)求数列{an}的通项公式an;
(2)令bn=
| an |
| 2n-1 |
(3)令cn=
| an |
| an+1 |
| an+1 |
| an |
| 1 |
| 2 |
分析:(1)根据数列{an}的前n项和Sn满足Sn=
n2+
n(n∈N*),利用n≥2时,an=Sn-Sn-1,结合n=1时,a1=S1=2,可求数列
的通项公式an;
(2)根据数列{bn}通项的特点,利用错位相减法,可求数列{bn}的前n项和Tn
(3)根据cn=
+
=
+
=
+
=
+
+1>1,可证不等式的左边;根据cn=
+
=
+
=
+
=2-
+
,可证不等式的右边.
| 1 |
| 2 |
| 3 |
| 2 |
|
|
(2)根据数列{bn}通项的特点,利用错位相减法,可求数列{bn}的前n项和Tn
(3)根据cn=
| an |
| an+1 |
| an+1 |
| an |
| n+1 |
| n+2 |
| n+2 |
| n+1 |
| n+1 |
| n+2 |
| n+1+1 |
| n+1 |
| n+1 |
| n+2 |
| 1 |
| n+1 |
| an |
| an+1 |
| an+1 |
| an |
| n+1 |
| n+2 |
| n+2 |
| n+1 |
| n+2-1 |
| n+2 |
| n+1+1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
解答:解:(1)n≥2时,an=Sn-Sn-1=
n2+
n-
(n-1)2-
(n-1)=n+1
n=1时,a1=S1=2,也满足上式
∴an=n+1(n∈N*).
(2)bn=
=
∴Tn=b1+b2+…+bn=
+
+…+
①
Tn=
+
+…+
②
①-②得
Tn=
+
+
+…+
-
∴
Tn=3-
-
∴Tn=6-
-
(3)∵cn=
+
=
+
=
+
=
+
+1>1
∴2n<c1+c2+…+cn,
∵cn=
+
=
+
=
+
=2-
+
∴c1+c2+…+cn=2n+
-
≤2n+
-
<2n+
∴2n<c1+c2+…cn<2n+
.
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
n=1时,a1=S1=2,也满足上式
∴an=n+1(n∈N*).
(2)bn=
| an |
| 2n-1 |
| n+1 |
| 2n-1 |
∴Tn=b1+b2+…+bn=
| 2 |
| 20 |
| 3 |
| 21 |
| n+1 |
| 2n-1 |
| 1 |
| 2 |
| 2 |
| 21 |
| 3 |
| 22 |
| n+1 |
| 2n |
①-②得
| 1 |
| 2 |
| 2 |
| 20 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n+1 |
| 2n |
∴
| 1 |
| 2 |
| 2 |
| 2n |
| n+1 |
| 2n |
∴Tn=6-
| 4 |
| 2n |
| n+1 |
| 2n-1 |
(3)∵cn=
| an |
| an+1 |
| an+1 |
| an |
| n+1 |
| n+2 |
| n+2 |
| n+1 |
| n+1 |
| n+2 |
| n+1+1 |
| n+1 |
| n+1 |
| n+2 |
| 1 |
| n+1 |
∴2n<c1+c2+…+cn,
∵cn=
| an |
| an+1 |
| an+1 |
| an |
| n+1 |
| n+2 |
| n+2 |
| n+1 |
| n+2-1 |
| n+2 |
| n+1+1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴c1+c2+…+cn=2n+
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
∴2n<c1+c2+…cn<2n+
| 1 |
| 2 |
点评:本题考查的重点是数列与不等式的综合,解题的关键是根据数列{an}的前n项和Sn满足Sn=
n2+
n(n∈N*),利用n≥2时,an=Sn-Sn-1,利用错位相减法求数列的和,注意不等式证明中的适当放缩.
| 1 |
| 2 |
| 3 |
| 2 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |