题目内容

已知数列{an}的前n项和Sn满足Sn=
1
2
n2+
3
2
n
(n∈N*).
(1)求数列{an}的通项公式an
(2)令bn=
an
2n-1
求数列{bn}的前n项和Tn
(3)令cn=
an
an+1
+
an+1
an
证明:2n<c1+c2+…cn<2n+
1
2
分析:(1)根据数列{an}的前n项和Sn满足Sn=
1
2
n2+
3
2
n
(n∈N*),利用n≥2时,an=Sn-Sn-1,结合n=1时,a1=S1=2,可求数列
a
 
 
n
的通项公式an
(2)根据数列{bn}通项的特点,利用错位相减法,可求数列{bn}的前n项和Tn
(3)根据cn=
an
an+1
+
an+1
an
=
n+1
n+2
+
n+2
n+1
=
n+1
n+2
+
n+1+1
n+1
=
n+1
n+2
+
1
n+1
+1>1
,可证不等式的左边;根据cn=
an
an+1
+
an+1
an
=
n+1
n+2
+
n+2
n+1
=
n+2-1
n+2
+
n+1+1
n+1
=2-
1
n+1
+
1
n+2
,可证不等式的右边.
解答:解:(1)n≥2时,an=Sn-Sn-1=
1
2
n2+
3
2
n-
1
2
(n-1)2-
3
2
(n-1)
=n+1
n=1时,a1=S1=2,也满足上式
∴an=n+1(n∈N*).
(2)bn=
an
2n-1
=
n+1
2n-1

∴Tn=b1+b2+…+bn=
2
20
3
21
+…+ 
n+1
2n-1

1
2
Tn=
2
21
+
3
22
+…+
n+1
2n

①-②得
1
2
Tn=
2
20
+
1
21
+
1
22
+…+
1
2n-1
-
n+1
2n

1
2
Tn=3-
2
2n
-
n+1
2n

Tn=6-
4
2n
-
n+1
2n-1

(3)∵cn=
an
an+1
+
an+1
an
=
n+1
n+2
+
n+2
n+1
=
n+1
n+2
+
n+1+1
n+1
=
n+1
n+2
+
1
n+1
+1>1

∴2n<c1+c2+…+cn
cn=
an
an+1
+
an+1
an
=
n+1
n+2
+
n+2
n+1
=
n+2-1
n+2
+
n+1+1
n+1
=2-
1
n+1
+
1
n+2

∴c1+c2+…+cn=2n+
1
n+2
-
1
2
≤2n+
1
3
-
1
2
<2n+
1
2

∴2n<c1+c2+…cn<2n+
1
2
点评:本题考查的重点是数列与不等式的综合,解题的关键是根据数列{an}的前n项和Sn满足Sn=
1
2
n2+
3
2
n
(n∈N*),利用n≥2时,an=Sn-Sn-1,利用错位相减法求数列的和,注意不等式证明中的适当放缩.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网