题目内容

已知函数f(x)=
x3x+1
,数列an满足a1=1,an+1=f(an)(n∈N*).
(1)求数列{an}的通项公式;
(2)记Sn=a1a2+a2a3+…+anan+1,求Sn
分析:(1)由已知得,an+1=
an
3an+1
,从而得到
1
an+1
-
1
an
=3
,数列{
1
an
}
是首项,公差的等差数列,再利用等差数列的通项公式数列{an}的通项公式即可;
(2)根据anan+1=
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)
利用拆项法即可求出Sn=a1a2+a2a3+…+anan+1
解答:解:(1)由已知得,an+1=
an
3an+1
,整理得
1
an+1
-
1
an
=3

∴数列{
1
an
}
是首项,公差的等差数列.
1
an
=1+(n-1)×3=3n-2

an=
1
3n-2
(n∈N*)
(6分)
(2)∵anan+1=
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)

Sn=a1a2+a2a3+…+anan+1=
1
1×4
+
1
4×7
+…+
1
(3n-2)(3n+1)

=
1
3
[(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n-2
-
1
3n+1
)]

=
1
3
(1-
1
3n+1
)=
n
3n+1
.(13分)
点评:本小题主要考查等差数列的应用、数列的求和、数列与函数的综合等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网