题目内容
已知函数f(x)=| x | 3x+1 |
(1)求数列{an}的通项公式;
(2)记Sn=a1a2+a2a3+…+anan+1,求Sn.
分析:(1)由已知得,an+1=
,从而得到
-
=3,数列{
}是首项,公差的等差数列,再利用等差数列的通项公式数列{an}的通项公式即可;
(2)根据anan+1=
=
(
-
)利用拆项法即可求出Sn=a1a2+a2a3+…+anan+1.
| an |
| 3an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
(2)根据anan+1=
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
解答:解:(1)由已知得,an+1=
,整理得
-
=3
∴数列{
}是首项,公差的等差数列.
∴
=1+(n-1)×3=3n-2,
故an=
(n∈N*)(6分)
(2)∵anan+1=
=
(
-
)
Sn=a1a2+a2a3+…+anan+1=
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)=
.(13分)
| an |
| 3an+1 |
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
∴
| 1 |
| an |
故an=
| 1 |
| 3n-2 |
(2)∵anan+1=
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
Sn=a1a2+a2a3+…+anan+1=
| 1 |
| 1×4 |
| 1 |
| 4×7 |
| 1 |
| (3n-2)(3n+1) |
=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
=
| 1 |
| 3 |
| 1 |
| 3n+1 |
| n |
| 3n+1 |
点评:本小题主要考查等差数列的应用、数列的求和、数列与函数的综合等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关题目