题目内容
在△ABC中,cosA=-
,cosB=
,BC=5,△ABC的面积=______.
| 5 |
| 13 |
| 3 |
| 5 |
∵cosA=-
,cosB=
,
∴sinA=
=
,sinB=
=
,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=
×
-
×
=
,
∵BC=a=5,
∴由正弦定理
=
得:c=
=
,
则S△ABC=
acsinB=
×5×
×
=
.
故答案为:
| 5 |
| 13 |
| 3 |
| 5 |
∴sinA=
| 1-cos2A |
| 12 |
| 13 |
| 1-cos2B |
| 4 |
| 5 |
∴sinC=sin(A+B)=sinAcosB+cosAsinB=
| 12 |
| 13 |
| 3 |
| 5 |
| 5 |
| 13 |
| 4 |
| 5 |
| 16 |
| 65 |
∵BC=a=5,
∴由正弦定理
| a |
| sinA |
| c |
| sinC |
| asinC |
| sinA |
| 4 |
| 3 |
则S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
| 4 |
| 3 |
| 4 |
| 5 |
| 8 |
| 3 |
故答案为:
| 8 |
| 3 |
练习册系列答案
相关题目