题目内容

已知直线l:y=tanα(x+2数学公式)交椭圆x2+9y2=9于A、B两点,若α为l的倾斜角,且|AB|的长不小于短轴的长,求α的取值范围.

解:将l方程与椭圆方程联立,消去y,得(1+9tan2α)x2+36tan2α•x+72tan2α-9=0,
∴|AB|=|x2-x1|==
由|AB|≥2,得tan2α≤
∴-≤tanα≤
∴α的取值范围是[0,]∪[,π).
分析:确定某一变量的取值范围,应设法建立关于这一变量的不等式,题设中已经明确给定弦长≥2b,最后可归结为计算弦长求解不等式的问题.
点评:本题考查直线的倾斜角,解题时要注意公式的灵活运用,认真解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网