题目内容
(2013•宁波二模)已知空间向量
,
满足|
|=|
|=1,且
,
的夹角为
,O为空间直角坐标系的原点,点A、B满足
=2
+
,
=3
-
,则△OAB的面积为( )
| a |
| b |
| a |
| b |
| a |
| b |
| π |
| 3 |
| OA |
| a |
| b |
| OB |
| a |
| b |
分析:由向量的运算可得|
|,|
|,以及
•
,代入夹角公式可得cos∠BOA,由平方关系可得sin∠BOA,代入三角形的面积公式S=
|
||
|sin∠BOA,计算可得.
| OA |
| OB |
| OA |
| OB |
| 1 |
| 2 |
| OA |
| OB |
解答:解:由题意可得|
|=
2=
=
=
,
同理可得|
|=
2=
=
=
,
而
•
=(2
+
)•(3
-
)=6
2+
•
-
2=6×12+1×1×
-12=
,
故cos∠BOA=
=
=
,可得sin∠BOA=
=
,
所以△OAB的面积S=
|
||
|sin∠BOA=
×
×
×
=
.
故选B
| OA |
(2
|
4
|
4×12+4×1×1×
|
| 7 |
同理可得|
| OB |
(3
|
9
|
9×12-6×1×1×
|
| 7 |
而
| OA |
| OB |
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
| 1 |
| 2 |
| 11 |
| 2 |
故cos∠BOA=
| ||||
|
|
| ||||
|
| 11 |
| 14 |
1-(
|
5
| ||
| 14 |
所以△OAB的面积S=
| 1 |
| 2 |
| OA |
| OB |
| 1 |
| 2 |
| 7 |
| 7 |
5
| ||
| 14 |
5
| ||
| 4 |
故选B
点评:本题考查平面向量的数量积和三角形面积的求解,熟练掌握公式是解决问题的关键,属中档题.
练习册系列答案
相关题目