题目内容
解方程x4+5x3-7x2-8x-12=0.
【答案】分析:将原式变形为(x4+5x3-6x2)-(x2+8x+12),提取公因式进行因式分解即可.
解答:解:左式=(x4+5x3-6x2)-(x2+8x+12)
=(x+6)[x2(x-1)-(x+2)]
=(x+6)(x3-x2-x-2)
=(x+6)[(x3-2x2)+(x2-x-2)]
=(x+6)(x-2)(x2+x+1)=0
可得原方程的四根为:
x1=-6,x2=2,x3=
,x4=
点评:本题考查高次方程的求根问题,将高次方程进行因式分解是解决此类问题的关键.
解答:解:左式=(x4+5x3-6x2)-(x2+8x+12)
=(x+6)[x2(x-1)-(x+2)]
=(x+6)(x3-x2-x-2)
=(x+6)[(x3-2x2)+(x2-x-2)]
=(x+6)(x-2)(x2+x+1)=0
可得原方程的四根为:
x1=-6,x2=2,x3=
点评:本题考查高次方程的求根问题,将高次方程进行因式分解是解决此类问题的关键.
练习册系列答案
相关题目