题目内容
已知函数f(x)=2sinx(sinx+cosx).
(1)求f(x)的最小正周期;
(2)当x∈[0,
]时,求f(x)的最大值.
(1)求f(x)的最小正周期;
(2)当x∈[0,
| π |
| 2 |
f(x)=2sinx(sinx+cosx)=2sin2x+2sinxcosx…(1分)
=1-cos2x+sin2x…(2分)
=
| 2 |
| ||
| 2 |
| ||
| 2 |
=
| 2 |
| π |
| 4 |
| π |
| 4 |
=
| 2 |
| π |
| 4 |
(1)f(x)的最小正周期T=
| 2π |
| 2 |
(2)∵0≤x≤
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
∴当2x-
| π |
| 4 |
| π |
| 2 |
| 3π |
| 8 |
且最大值为f(
| 3π |
| 8 |
| 2 |
| π |
| 2 |
| 2 |
练习册系列答案
相关题目