题目内容

某市甲、乙两校高二级学生分别有1100人和1000人,为了解两校全体高二级学生期末统考的数学成绩情况,采用分层抽样方法从这两所学校共抽取105名高二学生的数学成绩,并得到成绩频数分布表如下,规定考试成绩在[120,150]为优秀.

甲校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

[110,120)

[120,130)

[130,140)

[140,150)

频数

2

3

10

15

15

x

3

1

乙校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

[110,120)

[120,130)

[130,140)

[140,150)

频数

1

2

9

8

10

10

y

3

(1)求表中x与y的值;

(2)由以上统计数据完成下面2x2列联表,问是否有99%的把握认为学生数学成绩优秀与所在学校有关?

甲校

乙校

总计

优秀

a

b

ab

非优秀

c

d

cd

总计

ac

bd

n

参考公式:

P(K2k0)

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

 解:(1)由分层抽样可知,甲校抽取105×=55人………2分

                             乙校抽取105﹣55=50人………4分

所以x=55﹣(2+3+10+15+15+3+1)=6,………6分

y=50﹣(1+2+9+8+10+10+3)=7;………8分

(2)2x2列联表如下

甲校

乙校

总计

优秀

10

20

30

非优秀

45

30

75

总计

55

50

105

………10分

所以

所以没有99%的把握认为学生数学成绩优秀与所在学校有关.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网