题目内容
(2012•肇庆一模)已知△ABC的面积为2
,内角A,B,C的对边分别为a,b,c,已知a=3,b=4,0<C<90°.
(1)求sin(A+B)的值;
(2)求cos(2C+
)的值;
(3)求向量
,
的数量积
•
.
| 2 |
(1)求sin(A+B)的值;
(2)求cos(2C+
| π |
| 4 |
(3)求向量
| CB |
| AC |
| CB |
| AC |
分析:(1)△ABC中,由a=3,b=4,
absinC=2
,可求得sinC=
,从而可得sin(A+B)的值;
(2)由sinC=
,0<C<90°可求cosC,从而可求得sin2C,由二倍角的余弦公式可求得cos2C,最后利用两角和的余弦公式即可求得cos(2C+
);
(3))|
|=a=3,|
|=b=4,设向量
与
所成的角为θ,则θ=180°-C,利用向量的数量积即可求得
•
.
| 1 |
| 2 |
| 2 |
| ||
| 3 |
(2)由sinC=
| ||
| 3 |
| π |
| 4 |
(3))|
| CB |
| AC |
| CB |
| CA |
| CB |
| AC |
解答:解:(1)由
absinC=2
,即
×3×4sinC=2
,得sinC=
.(2分)
∵A+B=180°-C,
∴sin(A+B)=sin(180°-C)=sinC=
(4分)
(2)由(1)得sinC=
,∵0<C<90°,
∴cosC=
=
=
(5分)
∴cos2C=2cos2C-1=2×(
)2-1=
.(6分)
∴sin2C=2sinCcosC
=2×
×
=
(7分)
∴cos(2C+
)=cos2Ccos
-sin2Csin
=
×
-
×
=-
.(9分)
(3)∵|
|=a=3,|
|=b=4,(10分)
设向量
与
所成的角为θ,则θ=180°-C(11分)
∴
•
=|
|•|
|cosθ
=abcos(180°-C)
=-abcosC
=-3×4×
=-4
(12分)
| 1 |
| 2 |
| 2 |
| 1 |
| 2 |
| 2 |
| ||
| 3 |
∵A+B=180°-C,
∴sin(A+B)=sin(180°-C)=sinC=
| ||
| 3 |
(2)由(1)得sinC=
| ||
| 3 |
∴cosC=
| 1-sin2C |
1-(
|
| ||
| 3 |
∴cos2C=2cos2C-1=2×(
| ||
| 3 |
| 5 |
| 9 |
∴sin2C=2sinCcosC
=2×
| ||
| 3 |
| ||
| 3 |
=
2
| ||
| 9 |
∴cos(2C+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
| 5 |
| 9 |
| ||
| 2 |
2
| ||
| 9 |
| ||
| 2 |
=-
5
| ||||
| 18 |
(3)∵|
| CB |
| AC |
设向量
| CB |
| CA |
∴
| CB |
| AC |
| CB |
| AC |
=abcos(180°-C)
=-abcosC
=-3×4×
| ||
| 3 |
=-4
| 7 |
点评:本题考查正弦定理,考查同角三角函数间的基本关系与两角和与差的余弦,并以三角形为载体考查向量的数量积的运算,综合性强,突出运算能力的考查,属于难题.
练习册系列答案
相关题目