题目内容

(本题满分15分)

如图,矩形的两条对角线相交于点边所在直线的方程为

, 点边所在直线上.

(1)求边所在直线的方程;

(2)求矩形外接圆的方程;                                    

(3)若动圆过点,且与矩形

的外接圆外切,求动圆的圆心的方程.

 

 

 

 

【答案】

解:(1)因为边所在直线的方程为,且垂直,

所以直线的斜率为.又因为点在直线上,

所以边所在直线的方程为

(2)由解得点的坐标为,         

因为矩形两条对角线的交点为

所以为矩形外接圆的圆心.                        

从而矩形外接圆的方程为

(3)因为动圆过点,所以是该圆的半径,又因为动圆与圆外切,

所以,即

故点的轨迹是以为焦点,实轴长为的双曲线的左支.

因为实半轴长,半焦距

所以虚半轴长

从而动圆的圆心的轨迹方程为

 

【解析】略

 

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网