题目内容
(2007•揭阳二模)已知数列{an}的前n项和Sn和通项an满足Sn=
(1-an).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:Sn<
;
(Ⅲ)设函数f(x)=log
x,bn=f(a1)+f(a2)+…+f(an),求
.
| 1 |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:Sn<
| 1 |
| 2 |
(Ⅲ)设函数f(x)=log
| 1 |
| 3 |
| n |
| i=1 |
| 1 |
| bi |
分析:(I)利用数列递推式,再写一式,两式相减,利用等比数列的通项公式,即可求数列{an}的通项公式;
(Ⅱ)求出Sn的表达式,即可证明结论;
(III)求出bn=f(a1)+f(a2)+…+f(an),利用裂项法求和即可.
(Ⅱ)求出Sn的表达式,即可证明结论;
(III)求出bn=f(a1)+f(a2)+…+f(an),利用裂项法求和即可.
解答:(Ⅰ)解:当n≥2时,an=
(1-an)-
(1-an-1)=-
an+
an-1,
∴2an=-an+an-1
∴
=
,----------------------------------(4分)
由S1=a1=
(1-a1)得a1=
∴数列{an}是首项a1=
、公比为
的等比数列,
∴an=
×(
)n-1=(
)n------(6分)
(Ⅱ)证明:由Sn=
(1-an)得Sn=
[1-(
)n]---------------------------------(8分)
∵1-(
)n<1,∴
[1-(
)n]<
∴Sn<
---------------------------------------------------------(10分)
(Ⅲ)解:∵f(x)=log
x,
∴bn=log
a1+log
a2+…+log
an=log
(a1a2…an)
=log
(
)1+2+…+n=1+2+…+n=
-------------------(12分)
∴
=
=2(
-
)
∴
=
+
+…+
=2[(1-
)+(
-
)+…+(
-
)]=
--------(14分)
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴2an=-an+an-1
∴
| an |
| an-1 |
| 1 |
| 3 |
由S1=a1=
| 1 |
| 2 |
| 1 |
| 3 |
∴数列{an}是首项a1=
| 1 |
| 3 |
| 1 |
| 3 |
∴an=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(Ⅱ)证明:由Sn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
∵1-(
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
∴Sn<
| 1 |
| 2 |
(Ⅲ)解:∵f(x)=log
| 1 |
| 3 |
∴bn=log
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=log
| 1 |
| 3 |
| 1 |
| 3 |
| n(1+n) |
| 2 |
∴
| 1 |
| bn |
| 2 |
| n(1+n) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| n |
| i=1 |
| 1 |
| bi |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 2n |
| n+1 |
点评:本题考查数列的通项与求和,考查不等式的证明,确定数列的通项,正确运用裂项法是关键.
练习册系列答案
相关题目