题目内容
设数列{an}的前n项和为Sn,a1=1,Sn+1=4an+2(n∈N+)
(1)若bn=an+1-2an,求bn;
(2)若cn=
,求{cn}的前6项和T6;
(3)若dn=
,证明{dn}是等差数列.
(1)若bn=an+1-2an,求bn;
(2)若cn=
| 1 |
| an+1-2an |
(3)若dn=
| an |
| 2n |
解(1)∵a1=1,Sn+1=4an+2(n∈N+),
∴Sn+2=4an+1+2an+2=Sn+2-Sn+1=4(an+1-an),
∴an+2-2an+1=2(an+1-2an)
即bn+1=2bn
∴{bn}是公比为2的等比数列,且b1=a2-2a1
∵a1=1,a2+a1=S2
即a2+a1=4a1+2,
∴a2=3a1+2=5,
∴b1=5-2=3,
∴bn=3•2n-1.
(2)∵cn=
=
=
,
∴c1=
=
,∴cn=
•(
)n-1
∴{cn}是首项为
,公比为
的等比数列.
∴T6=
=
(1-
)=
.
(3)∵dn=
,bn=3•2n-1,
∴dn+1-dn=
-
=
=
即dn+1-dn=
=
,
∴{dn}是等差数列.
∴Sn+2=4an+1+2an+2=Sn+2-Sn+1=4(an+1-an),
∴an+2-2an+1=2(an+1-2an)
即bn+1=2bn
∴{bn}是公比为2的等比数列,且b1=a2-2a1
∵a1=1,a2+a1=S2
即a2+a1=4a1+2,
∴a2=3a1+2=5,
∴b1=5-2=3,
∴bn=3•2n-1.
(2)∵cn=
| 1 |
| an+1-2an |
| 1 |
| bn |
| 1 |
| 3•2n-1 |
∴c1=
| 1 |
| 3•21-1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
∴{cn}是首项为
| 1 |
| 3 |
| 1 |
| 2 |
∴T6=
| ||||
1-
|
| 2 |
| 3 |
| 1 |
| 64 |
| 61 |
| 96 |
(3)∵dn=
| an |
| 2n |
∴dn+1-dn=
| an+1 |
| 2n+1 |
| an |
| 2n |
| an+1-2an |
| 2n+1 |
| bn |
| 2n+1 |
即dn+1-dn=
| 3•2n-1 |
| 2n+1 |
| 3 |
| 4 |
∴{dn}是等差数列.
练习册系列答案
相关题目