题目内容

设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=
ax+1,-1≤x<0 
  
bx+2
x+1
,0≤x≤1
其中a,b∈R.若f(
1
2
)
=f(
3
2
)

则a+3b的值为______.
∵f(x)是定义在R上且周期为2的函数,f(x)=
ax+1,-1≤x<0 
  
bx+2
x+1
,0≤x≤1

∴f(
3
2
)=f(-
1
2
)=1-
1
2
a,f(
1
2
)=
b+4
3
;又f(
1
2
)
=f(
3
2
)

∴1-
1
2
a=
b+4
3

又f(-1)=f(1),
∴2a+b=0,②
由①②解得a=2,b=-4;
∴a+3b=-10.
故答案为:-10.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网