题目内容
已知数列{an}是等差数列,且满足:a1+a2+a3=6,a5=5;数列{bn}满足:bn-bn-1=an-1(n≥2,n∈N﹡),b1=1.
(Ⅰ)求an和bn;
(Ⅱ)记数列cn=
(n∈N*),若{cn}的前n项和为Tn,求Tn.
(Ⅰ)求an和bn;
(Ⅱ)记数列cn=
| 1 | bn+2n |
分析:(Ⅰ)利用a1+a2+a3=6,a5=5;通过数列是等差数列得到首项与公差的关系式,求出an,通过bn-bn-1=an-1,利用bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1,求出bn;
(Ⅱ)化简数列cn=
(n∈N*)的表达式,利用裂项法即可求解{cn}的前n项和为Tn.
(Ⅱ)化简数列cn=
| 1 |
| bn+2n |
解答:解:(Ⅰ)∵a1+a2+a3=6,a5=5;,∴
可得a1=1,d=1,…(2分)
∴an=n (3分)
又bn-bn-1=an-1=n-1,(n≥2,n∈N*),b1=1,
∴当n≥2时,
bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(n-1)+(n-2)+(n-3)+…+(2-1)+1
=
+1
=
,…(4分)
又b1=1适合上式,…(5分)
∴bn=
. …(6分)
(Ⅱ)∵cn=
=
=
=2(
-
),…(8分)
∴Tn=2(
-
)+2(
-
)+2(
-
)+…+2(
-
)
=2(
-
)=1-
=
.…(12分)
|
∴an=n (3分)
又bn-bn-1=an-1=n-1,(n≥2,n∈N*),b1=1,
∴当n≥2时,
bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(n-1)+(n-2)+(n-3)+…+(2-1)+1
=
| n(n-1) |
| 2 |
=
| n2-n+2 |
| 2 |
又b1=1适合上式,…(5分)
∴bn=
| n2-n+2 |
| 2 |
(Ⅱ)∵cn=
| 1 |
| bn+2n |
| 2 |
| n2+3n+2 |
| 2 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Tn=2(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=2(
| 1 |
| 2 |
| 1 |
| n+2 |
| 2 |
| n+2 |
| n |
| n+2 |
点评:本题考查等差数列与等比数列的综合应用,数列求和的方法|(裂项法以及累加法),考查分析问题解决问题的能力.
练习册系列答案
相关题目