题目内容
数列{an}中,an=
,若{an}的前n项和为
,则项数n为( )
| 1 |
| n(n+1) |
| 2010 |
| 2011 |
分析:由an=
=
-
,考虑利用裂项求解即可
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:∵an=
-
Sn=a1+a2+…+an
=1-
+
-
+…+
-
=1-
=
=
∴n=2010
故选C
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
Sn=a1+a2+…+an
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
| 2010 |
| 2011 |
∴n=2010
故选C
点评:本题主要考查了利用裂项求和,属于基础试题
练习册系列答案
相关题目