题目内容
若函数f(x)=-x+2
的单调递增区间为[0,1],则a=________.
0
分析:由f(x)=-x+2
,知
,由
>0,函数f(x)=-x+2
的单调递增区间为[0,1],能求出a.
解答:∵f(x)=-x+2
,
∴
,
由
>0,
得
,
∴0<
<1,
解得a<x<a+1,
∵函数f(x)=-x+2
的单调递增区间为[0,1],
∴a=0,
故答案为:0.
点评:本题考查利用导数研究函数的单调性的应用,解题时要认真审题,注意导数的性质在求函数增区间时的灵活运用.
分析:由f(x)=-x+2
解答:∵f(x)=-x+2
∴
由
得
∴0<
解得a<x<a+1,
∵函数f(x)=-x+2
∴a=0,
故答案为:0.
点评:本题考查利用导数研究函数的单调性的应用,解题时要认真审题,注意导数的性质在求函数增区间时的灵活运用.
练习册系列答案
相关题目
若函数f(x)(x∈R)为奇函数,且存在反函数f-1(x)(与f(x)不同),F(x)=
,则下列关于函数F(x)的奇偶性的说法中正确的是( )
| 2f(x)-2f-1(x) |
| 2f(x)+2f-1(x) |
| A、F(x)是奇函数非偶函数 |
| B、F(x)是偶函数非奇函数 |
| C、F(x)既是奇函数又是偶函数 |
| D、F(x)既非奇函数又非偶函数 |