题目内容

如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则的值为   
【答案】分析:本题主要考查四点共圆的性质与相似三角形的性质,属于容易题.由ABCD四点共圆不难得到△PBC∽△PAB,再根据相似三角形性质,即可得到结论.
解答:解:因为A,B,C,D四点共圆,
所以∠DAB=∠PCB,∠CDA=∠PBC,
因为∠P为公共角,
所以△PBC∽△PAD,
所以=
故答案为:
点评:四点共圆时四边形对角互补,圆与三角形综合问题是高考中平面几何选讲的重要内容,也是考查的热点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网