题目内容

设全集U={1,2},集合A={x|x2+px+q=0},CUA={1},
(1)求p、q;
(2)试求函数y=px2+qx+15在[
1
2
,2]上的反函数.
(1)∵U={1,2},而CUA={1},
∴A={2},即方程x2+px+q=0的两根均为2,
由一元二次方程根与系数的关系知:
2+2=-p
2×2=q
,∴
p=-4
q=4

(2)∵y=-4x2+4x+15=-4(x-
1
2
2+16,
1
2
≤x≤2,∴7≤y≤16,
∴4(x-
1
2
2=16-y,
∴x-
1
2
=
1
2
16-y

∴x=
1
2
+
1
2
16-y

故原函数的反函数是y=
1
2
+
1
2
16-x
(7≤x≤16).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网