题目内容

精英家教网在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D.
(1)求证:
PC
AC
=
PD
BD

(2)若AC=3,求AP•AD的值.
分析:(1)先由角相等∠CPD=∠ABC,∠D=∠D,证得三角形相似,再结合线段相等即得所证比例式;
(2)由于∠ACD=∠APC,∠CAP=∠CAP,从而得出两个三角形相似:“△APC~△ACD”结合相似三角形的对应边成比例即得AP•AD的值.
解答:解:(1)∵∠CPD=∠ABC,∠D=∠D,
∴△DPC~△DBA,∴
PC
AB
=
PD
BD

又∵AB=AC,∴
PC
AC
=
PD
BD
(5分)
(2)∵∠ACD=∠APC,∠CAP=∠CAP,∴△APC~△ACD∴
AP
AC
=
AC
AD

∴AC2=AP•AD=9(5分)
点评:本小题属于基础题.此题主要考查的是相似三角形的性质、相似三角形的判定,正确的判断出相似三角形的对应边和对应角是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网