题目内容

设数列{an}的前n项和为Sn,点(n,
Sn
n
) (n∈N*)
均在函数y=3x-2的图象上.
(1)求数列{an}的通项公式;
(2)设bn=
6
anan+1
,Tn是数列{bn}的前n项和,试求Tn
分析:(1)先求出Sn,然后利用当n≥2时,an=Sn-Sn-1代入求解,最后验证首项即可;
(2)将bn进行裂项,即bn=
6
anan+1
=
1
6n-5
-
1
6n+1
,然后进行求和,消去一些项即可求出数列{bn}的前n项和.
解答:解:(1)依题意得,
Sn
n
=3n-2
,即Sn=3n2-2n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;
当n=1时,a1=S1=3×12-2×1=1=6×1-5.
所以an=6n-5(n∈N*).
(2)由(1)得bn=
6
anan+1
=
6
(6n-5)[6(n+1)-5]
=
1
6n-5
-
1
6n+1

Tn=(1-
1
7
)+(
1
7
-
1
13
)+…+(
1
6n-5
-
1
6n+1
)=1-
1
6n+1
=
6n
6n+1
点评:本题主要考查了等差数列的通项公式以及利用裂项求和法求数列的和,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网