题目内容
在长方体AC′中,AB=AC=a,BB′=b(b>a),连接BC′,过点B′作B′E⊥BC′交CC′于E.
(1)求证:AC′⊥平面EB′D′;
(2)求三棱锥C′-B′D′E的体积.

(1)求证:AC′⊥平面EB′D′;
(2)求三棱锥C′-B′D′E的体积.
(1)证明:由题意,长方体底面为正方形,
A′C′⊥B′D′,AC′⊥B′D′,
又∵B′E⊥BC′,
∴AC′⊥B′E,
∴AC′⊥平面EB′D′
(2)由∠B′C′B=∠B′EC′,又EC′=
=
.
∴VC′-B′D′E=VE-B′C′D′=
×
a2×
=
A′C′⊥B′D′,AC′⊥B′D′,
又∵B′E⊥BC′,
∴AC′⊥B′E,
∴AC′⊥平面EB′D′
(2)由∠B′C′B=∠B′EC′,又EC′=
| a |
| tan∠B′EC′ |
| a2 |
| b |
∴VC′-B′D′E=VE-B′C′D′=
| 1 |
| 3 |
| 1 |
| 2 |
| a2 |
| b |
| a4 |
| 6b |
练习册系列答案
相关题目