题目内容
设函数f(x)=cos(x+
π)+2cos 2
,x∈R,函数的值域______.
| 2 |
| 3 |
| x |
| 2 |
∵f(x)=cos(x+
)+2cos2
=cosx•cos
-sinxsin
+cosx+1=
cosx-
sinx+1=sin(x+
)+1,
由于-1≤sin(x+
)≤1,∴0≤sin(x+
)+1≤2,故函数 f(x)的值域为[0,2],
故答案为[0,2].
| 2π |
| 3 |
| x |
| 2 |
| 2π |
| 3 |
| 2π |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 5π |
| 6 |
由于-1≤sin(x+
| 5π |
| 6 |
| 5π |
| 6 |
故答案为[0,2].
练习册系列答案
相关题目