题目内容
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:![]()
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率。w_w
解:(1)画出二维条形图,通过分析数据的图形,或者联列表的对角线的乘积的差的绝对值来分析,得到的直观印象是收看新闻节目的观众与年龄有关;
(2)在100名电视观众中,收看新闻的观众共有45人,其中20至40岁的观众有18人,大于40岁的观众共有27人。
故按分层抽样方法,在应在大于40岁的观众中中抽取
人。
(3)法一:由(2)可知,抽取的5人中,年龄大于40岁的有3人,分别记作1,2,3;20岁至40岁的观众有2人,分别高为
,若从5人中任取2名观众记作
,则包含的总的基本事件有:
共10个。其中恰有1名观众的年龄为20岁至40岁包含的基本事件有:
共6个。
故
(“恰有1名观众的年龄为20至40岁”)=
;
法二:
(“恰有1名观众的年龄为20至40岁”)=![]()
下列说法最准确的是( )
| A、有99%的把握认为收看不同节目类型的观众与年龄有关 | B、有95%的把握认为收看不同节目类型的观众与年龄有关 | C、有99%的把握认为收看不同节目类型的观众与年龄无关 | D、有95%的把握认为收看不同节目类型的观众与年龄无关 |
(本题满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
|
|
文艺节目 |
新闻节目 |
总计 |
|
20至40岁 |
40 |
10 |
50 |
|
大于40岁 |
20 |
30 |
50 |
|
总计 |
60 |
40 |
100 |
(1)由表中数据检验,有没有99.9%把握认为收看文艺节目的观众与年龄有关?
(2)20至40岁,大于40岁中各抽取1名观众,求两人恰好都收看文艺节目的概率.
![]()
|
P(k2>k) |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
k |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.84 |
5.024 |
6.635 |
7.879 |
10.83 |
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
| 文艺节目 | 新闻节目 | 总计 | |
| 20至40岁 | 40 | 10 | 50 |
| 大于40岁 | 20 | 30 | 50 |
| 总计 | 60 | 40 | 100 |
(2)20至40岁,大于40岁中各抽取1名观众,求两人恰好都收看文艺节目的概率.
| P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |