题目内容
函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则
+
的最小值为( )
| 1 |
| m |
| 2 |
| n |
| A、6 | B、8 | C、10 | D、12 |
分析:根据对数函数的性质先求出A的坐标,代入直线方程可得m、n的关系,再利用1的代换结合均值不等式求解即可.
解答:解:∵x=-2时,y=loga1-1=-1,
∴函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点(-2,-1)即A(-2,-1),
∵点A在直线mx+ny+1=0上,
∴-2m-n+1=0,即2m+n=1,
∵mn>0,
∴m>0,n>0,
+
=
+
=2+
+
+2≥4+2•
=8,
当且仅当m=
,n=
时取等号.
故选B.
∴函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点(-2,-1)即A(-2,-1),
∵点A在直线mx+ny+1=0上,
∴-2m-n+1=0,即2m+n=1,
∵mn>0,
∴m>0,n>0,
| 1 |
| m |
| 2 |
| n |
| 2m+n |
| m |
| 4m+2n |
| n |
| n |
| m |
| 4m |
| n |
|
当且仅当m=
| 1 |
| 4 |
| 1 |
| 2 |
故选B.
点评:本题考查了对数函数的性质和均值不等式等知识点,运用了整体代换思想,是高考考查的重点内容.
练习册系列答案
相关题目