题目内容

如图,边长为a的正三角形ABC,PA⊥平面ABC,PA=a,QC⊥平面ABC,QC=数学公式,PQ与AC延长线交于F点.
(1)若D为PB中点,证明:QD∥平面ABC;
(2)证明:BF⊥平面PAB.

证明:(1)取AB中点E,连接DE,则DEPA,连接CE
∵PA⊥面ABC,QC⊥面ABC,
∴PA∥QC,∴DEQC
∴四边形DECQ为矩形
∴DQ∥CE,CE?面ABC,
∴DQ∥面ABC(6分)
(2)∵PA∥QC,且
∴C为AF中点
∴BF⊥BA
∵PA⊥面ABC?BF⊥面PAB(11分)
∴BF⊥PA(12分)
分析:(1)取AB中点E,连接DE、CE,根据三角形中位线定理,及PA⊥面ABC,QC⊥面ABC,易证明出四边形DECQ为矩形,则DQ∥CE,由线面平行的判定定理,即可得到答案.
(2)由(1)中PA∥QC,PA=a,QC=,易得到C为AF的中点,根据直角三角形性质,可得BF⊥BA,根据线面垂直的判定中得BF⊥面PAB.
点评:本题考查的知识点是直线与平面垂直的判定,直线与平面平行的判定,熟练掌握空间直线与平面平行及垂直的判定定理,几何特征是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网