题目内容

已知等比数列{an}中,a2=2,a5=128.若bn=log2an,数列{bn}前n项的和为Sn
(Ⅰ)若Sn=35,求n的值;
(Ⅱ)求不等式Sn<2bn的解集.
(Ⅰ)∵a2=a1q=2,a5=a1q4=128得q3=64,
∴q=4,a1=
1
2

∴an=a1qn-1=
1
2
×4n-1
=22n-3,∴bn=log2an=log222n-3=2n-3
∵bn+1-bn=[2(n+1)-3]-(2n-3)=2
∴{bn}是以b1=-1为首项,2为公差数列;
∴Sn=
(-1+2n-3)n
2
=35,即n2-2n-35=0,可得(n-7)(n+5)=0,
即n=7;
(Ⅱ)∵Sn-bn=n2-2n-(2n-3)=n2-4n+3<0
∴3-
3
<n<3+
3
,∵n∈N+
∴n=2,3,4,即所求不等式的解集为{2,3,4};
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网