题目内容
已知数列{an}满足a1=
,2an+an-1=(-1)nan•an-1(n≥2,n∈N*),an≠0.
(1)求证:数列{
+(-1)n}是等比数列,并求{an}的通项公式;
(2)设bn=an•sin
,数列{bn}的前n项和为Tn,求证:对任意的n∈N*有Tn<
成立.
| 1 |
| 4 |
(1)求证:数列{
| 1 |
| an |
(2)设bn=an•sin
| (2n-1)π |
| 2 |
| 7 |
| 12 |
分析:(1)由2an+an-1=(-1)nan•an-1,两边同除以an•an-1,并整理,即可证得数列{
+(-1)n}是等比数列,利用等比数列的通项公式,可求{an}的通项公式;
(2)先确定数列{bn}的通项公式,再进行放缩,利用等比数列的求和公式,即可证得结论.
| 1 |
| an |
(2)先确定数列{bn}的通项公式,再进行放缩,利用等比数列的求和公式,即可证得结论.
解答:证明:(1)由2an+an-1=(-1)nan•an-1得
=(-1)n-
(n≥2,n∈N*)
∴
+(-1)n=(-2)•[
+(-1)n-1]
又∵
+(-1)=3,
∴数列[
+(-1)n]是首项为3,公比为-2的等比数列,
从而
+(-1)n=3(-2)n-1,即an=
;
(2)∵sin
=(-1)n-1,
∴bn=
=
∴Tn=
+
+…+
=
+
×
=
+
-
<
.
| 1 |
| an |
| 2 |
| an-1 |
∴
| 1 |
| an |
| 1 |
| an-1 |
又∵
| 1 |
| a1 |
∴数列[
| 1 |
| an |
从而
| 1 |
| an |
| 1 |
| 3(-2)n-1-(-1)n |
(2)∵sin
| (2n-1)π |
| 2 |
∴bn=
| (-1)n-1 |
| 3•(-2)n-1-(-1)n |
| 1 |
| 3•2n-1+1 |
∴Tn=
| 1 |
| 3+1 |
| 1 |
| 3×2+1 |
| 1 |
| 3×2n-1+1 |
|
=
| 1 |
| 4 |
| 1 |
| 3 |
| ||||
1-
|
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2n-1 |
| 7 |
| 12 |
点评:本题考查等比数列的证明,考查数列的通项与求和,考查不等式的证明,正确证明数列是等比数列是关键.
练习册系列答案
相关题目