题目内容
(2012•闵行区一模)已知函数f(x)=|x+
|-|x-
|,关于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,则a的取值范围是
| 1 |
| x |
| 1 |
| x |
(-4,-2)
(-4,-2)
.分析:题中原方程f2(x)+a|f(x)|+b=0恰有6个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有当f(x)=2时,它有二个根,且当f(x)=k(0<k<2),关于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,据此即可求得实数a的取值范围.
解答:
解:先根据题意作出f(x)的简图:
得f(x)>0.
∵题中原方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,即方程f2(x)+af(x)+b=0(a,b∈R)恰有6个不同实数解,
∴故由图可知,只有当f(x)=2时,它有二个根.故关于x的方程f2(x)+af(x)+b=0中,
有:4+2a+b=0,b=-4-2a,
且当f(x)=k,0<k<2时,关于x的方程f2(x)+af(x)+b=0有4个不同实数解,
∴k2+ak-4-2a=0,
a=-2-k,∵0<k<2,
∴a∈(-4,-2).
故答案为:(-4,-2).
得f(x)>0.
∵题中原方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,即方程f2(x)+af(x)+b=0(a,b∈R)恰有6个不同实数解,
∴故由图可知,只有当f(x)=2时,它有二个根.故关于x的方程f2(x)+af(x)+b=0中,
有:4+2a+b=0,b=-4-2a,
且当f(x)=k,0<k<2时,关于x的方程f2(x)+af(x)+b=0有4个不同实数解,
∴k2+ak-4-2a=0,
a=-2-k,∵0<k<2,
∴a∈(-4,-2).
故答案为:(-4,-2).
点评:数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.
练习册系列答案
相关题目