题目内容
(1)已知
-
=
,求C8m;
(2)解方程C16x2-x=C165x-5;
(3)计算C100+C111+C122+…+C10099.
| 1 | ||
|
| 1 | ||
|
| 7 | ||
10
|
(2)解方程C16x2-x=C165x-5;
(3)计算C100+C111+C122+…+C10099.
(1)由已知得
-
=
,
化简得m2-23m+42=0,
解得m=2或21,
但0≤m≤5,故m=2.
∴
=
=
=28.
(2)原方程可化为x2-x=5x-5或x2-x=16-(5x-5),
即x2-6x+5=0或x2+4x-21=0,
解得x=1或x=5或x=-7或x=3,
经检验x=5或x=-7不合题意,
故原方程的根为x=1或x=3.
(3)原式=(C110+C111)+C122+…+C10099=(C121+C122)+…+C10099
=(C132+C133)++C10099=
=
=
=5050.
| m!(5-m)! |
| 5! |
| m!(6-m)! |
| 6! |
| 7(7-m)!m! |
| 10•7! |
化简得m2-23m+42=0,
解得m=2或21,
但0≤m≤5,故m=2.
∴
| C | m8 |
| C | 28 |
| 8×7 |
| 2×1 |
(2)原方程可化为x2-x=5x-5或x2-x=16-(5x-5),
即x2-6x+5=0或x2+4x-21=0,
解得x=1或x=5或x=-7或x=3,
经检验x=5或x=-7不合题意,
故原方程的根为x=1或x=3.
(3)原式=(C110+C111)+C122+…+C10099=(C121+C122)+…+C10099
=(C132+C133)++C10099=
| C | 99101 |
| C | 2101 |
| 101×100 |
| 2×1 |
练习册系列答案
相关题目