题目内容
已知数列{an}满足an+1=
,an≠0,且a1=
,cn=(
)(
)n(n∈N*).
(Ⅰ)求证:数列{
}是等差数列,并求通项an;
(Ⅱ)求Tn=c1+c2+…+cn的值.
| 2an |
| an+2 |
| 1 |
| 2 |
| 2-2an |
| an |
| 1 |
| 2 |
(Ⅰ)求证:数列{
| 1 |
| an |
(Ⅱ)求Tn=c1+c2+…+cn的值.
(Ⅰ)∵an+1=
,an≠0,
=
+
,
数列{
}是首项为
=2,公差为
的等差数列,
故
=
+
(n-1)=
n+
所以数列{an}的通项公式为an=
,
(Ⅱ)∵Cn=(n+1)•(
)n
∴Tn=2×
+3×(
)2+…+(n+1)×(
)n①
Tn= 2×(
)2+3×(
)3+…+(n+1)×(
)n+1②
由①-②得
Tn =1+(
)2+…+(
)n-(n+1)(
)n+1
=1+
-(n+1)•(
)n+1
=
-
∴Tn=3-
| 2an |
| an+2 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| 2 |
数列{
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| 2 |
故
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
所以数列{an}的通项公式为an=
| 2 |
| n+3 |
(Ⅱ)∵Cn=(n+1)•(
| 1 |
| 2 |
∴Tn=2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
由①-②得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1+
| ||||
1-
|
| 1 |
| 2 |
=
| 3 |
| 2 |
| n+3 |
| 2n+1 |
∴Tn=3-
| n+3 |
| 2n |
练习册系列答案
相关题目