题目内容

已知函数f(x)=ax+logax(a>0且a≠1)在[1,2]上的最大值与最小值之和为(loga2)+6,则a的值为(  )
A.
1
2
B.
1
4
C.2D.4
因为函数f(x)=ax+logax(a>0且a≠1),
所以函数f(x)在a>1时递增,最大值为f(2)=a2+loga2;最小值为f(1)=a1+loga1
函数f(x)在0<a<1时递减,最大值为f(1)=a1+loga1,最小值为f(2)=a2+loga2
故最大值和最小值的和为:f(1)+f(2)=a2+loga2+a1+loga1=loga2+6.
∴a2+a-6=0?a=2,a=-3(舍).
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网